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Abstract 
 

A solar array simulator (SAS) is a DC/DC power supply 
used in the industry which gives an output similar to real 
PV panels. However, due to the implicitness of the I-V 
characteristic equation, enumeration of the I-V curve is not 
straightforward. Various approximated models have been 
proposed in the past to obtain numerical solutions across 
the full range of the curve. A major drawback of these 
techniques is the execution time required. For a high-
performance implementation of SAS in real-time, a very 
fast execution time is required. In this paper, a novel 
approximation method based on the principle of the 
superellipse is proposed. In its first quadrant, the proposed 
method has an execution time that is 32 times faster than 
the conventional fixed-point iterative method.  
 
1  Introduction 
 

The three main components of SAS are the controller 
circuit, a DC/DC converter, and a reference generator. The 
reference generator is responsible for the fast and accurate 
enumeration of the I-V curve. Most SAS reference 
generators are often embedded with either a look-up table 
or a set of transcendental equations used in approximating 
the basic I-V characteristic equation.  

Approximate I-V equations proffer an easy way to obtain 
instantaneous enumeration across the full range of the I-V 
curve. The most commonly used transcendental equations 
are based on the Lambert-W function and the Newton-
Raphson method due to their easy fit to the basic I-V 
characteristic equation [1]. Other proposed methods in the 
literature are based on the Chebyshev polynomials, Padé 
approximants, sine-cosine function, and datasheet 
transforming curves [2].  

However, obtaining the solution to these equations is 
quite difficult requiring long iterations, and in some rare 
cases, this results in a non-convergence due to infinite 
iterations [3]. This high iteration count leads to a 
corresponding slow execution time as observed in most 
SAS. Hence, this paper proposes a novel method for 
achieving a fast and accurate enumeration of the I-V curve 
using the mathematical principle of a superellipse.  

 
(a) 

 
(b) 

Fig. 1 A plot of a (a) typical I-V curve for PV panels (b) 
superellipse with a varying n 
 

 
(a) 

 
(b) 

Fig. 2 Comparison using 5 different methods (a) I-V curve 
approximation (b) execution time 
 
2  Proposed Method 
 

The single-diode model of the photovoltaic (PV) panel is 
the most widely used equivalent circuit model for its 
modeling and simulation. The characteristic equation 
describing a typical I-V curve in Fig. 1a with its four key 
points (open circuit voltage  𝑉𝑉𝑜𝑜𝑐𝑐 ,  short circuit 
current 𝐼𝐼𝑠𝑠𝑐𝑐 , current at the maximum power point 𝐼𝐼𝑚𝑚𝑚𝑚 , and 
voltage at the maximum power point 𝑉𝑉𝑚𝑚𝑚𝑚) can be written 
as 

 
𝐼𝐼 = 𝐼𝐼𝑚𝑚ℎ − 𝐼𝐼𝑠𝑠 �𝑒𝑒

𝑞𝑞(𝑉𝑉+𝐼𝐼𝑅𝑅𝑠𝑠)
𝐴𝐴𝑞𝑞𝑘𝑘𝑘𝑘 − 1� −

(𝑉𝑉 + 𝐼𝐼𝑅𝑅𝑠𝑠)
𝑅𝑅𝑚𝑚

 
(1) 

where 𝐼𝐼 is the PV terminal current, 𝑉𝑉 is the PV terminal 
voltage, 𝑘𝑘 is the Boltzman constant (1.38 × 10−23𝐽𝐽/𝐾𝐾), 
𝑞𝑞 is the electronic charge (1.6 × 10−19 𝐶𝐶) , 𝑇𝑇  is the PV 
cell temperature, while 𝐼𝐼𝑠𝑠  and 𝐼𝐼𝑚𝑚ℎ  is the saturation 
current and the photo-generated current respectively. The 
limitation of the exponential equation in (1) is that the 
parameters are not directly related to the key points. 

On the contrary, a superellipse is an ellipse that retains its 
fixed points irrespective of distortion in shape as shown in 
Fig. 1b. A closer look at Fig. 1 shows that both curves share 
some similar characteristics, especially at the fixed  
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Table 1 Enumeration performance for 5 different approximation methods using KC200GT PV panel 

** Enumeration was evaluated in an 11th Gen Intel(R) Core(TM) i9-11900K @ 3.50GHz, 3504 Mhz, 8 Core(s), 16 Logical Processor(s) CPU 

 
points. In its Cartesian coordinate, the equation describing 
a given point 𝑃𝑃(𝑥𝑥, 𝑦𝑦) in Fig. 1b is given as 

  �
𝑥𝑥
𝑎𝑎
�
𝑛𝑛

+ �
𝑦𝑦
𝑏𝑏
�
𝑛𝑛

= 1  (2) 

where 𝑛𝑛 , 𝑎𝑎,  and 𝑏𝑏  are the fitting parameter and fixed-
points of the major and minor axes, respectively.  

The exponent can therefore be determined by considering 
the maximum power point 𝑀𝑀𝑃𝑃𝑃𝑃�𝑉𝑉𝑚𝑚𝑚𝑚 , 𝐼𝐼𝑚𝑚𝑚𝑚�  for the I-V 

curve, while the fixed-points (𝑎𝑎, 𝑏𝑏) as the (𝑉𝑉𝑜𝑜𝑐𝑐 , 𝐼𝐼𝑠𝑠𝑐𝑐). The 
new mathematical equation to be used in approximating the 
I-V curve is now 

 
�
𝑉𝑉𝑚𝑚𝑚𝑚

𝑉𝑉𝑜𝑜𝑐𝑐
�
𝑛𝑛

+ �
𝐼𝐼𝑚𝑚𝑚𝑚

𝐼𝐼𝑠𝑠𝑐𝑐
�
𝑛𝑛

= 1.  
(3) 

�𝑉𝑉𝑚𝑚𝑚𝑚
𝑉𝑉𝑜𝑜𝑜𝑜
� and �𝐼𝐼𝑚𝑚𝑚𝑚

𝐼𝐼𝑠𝑠𝑜𝑜
� are the voltage and current ratios that 

have been used in literature for the effective approximation 
of MPP using MPP tracking algorithms [4]. Hence, using 
(3), the full range of the I-V curve can be easily enumerated. 
To simplify (3), let’s take 𝐴𝐴 = 𝑉𝑉𝑚𝑚𝑚𝑚

𝑉𝑉𝑜𝑜𝑜𝑜
  and 𝐵𝐵 = 𝐼𝐼𝑚𝑚𝑚𝑚

𝐼𝐼𝑠𝑠𝑜𝑜
 , then the 

simplified equation now becomes 
 𝐴𝐴𝑛𝑛 + 𝐵𝐵𝑛𝑛 = 1.  (4) 

To obtain 𝑛𝑛 , a simple iteration is performed after 
introducing an error margin (ERM) into (4) such that 

 |(𝐴𝐴𝑛𝑛 + 𝐵𝐵𝑛𝑛) − 1| ≤ 𝐸𝐸𝑅𝑅𝑀𝑀. (5) 

 
3  Simulation Results 
 

The KC200GT PV panel is the most widely used panel 
for evaluating the performance of the I-V curve 
approximation method. The proposed method and four 
other methods are therefore implemented using its panel 
specification in MATLAB R2021b.  

Similar to the iteration performed in the four conventional 
methods, the proposed method is also dependent on its 
ERM as shown in (5). A higher ERM reduces the number 
of iterations required while downgrading its accuracy. The 
4 conventional methods failed to obtain the exact MPP as 
specified by the manufacturer datasheet with an average 
percentage error of roughly −7%.  

With an optimum value of 𝑛𝑛 ≈ 3.6, the proposed method 
generates an approximate I-V curve with a percentage error 
that is about one-third of the conventional methods as 
shown in Table 1. 

 
Furthermore, the fill factor of the proposed method is 

close to the value obtained from the manufacturer datasheet 
as shown in Table 1. In addition, the execution time of the 
proposed method is relatively 32 times faster than the 
conventional methods as shown in Fig. 2b.  

These results meet the specific requirement for high-
performance SAS as discussed in Section 1. Also, the 
simulation results in Fig. 2 validated that the ratios in (4) 
and (5) can be used to eliminate the need for solving the 
long equations often required in conventional methods for 
the full-range enumeration of the I-V curve. 
 
4  Conclusion 

 
This paper presents a novel method for approximating the 

I-V curve. By obtaining the optimum value of 𝑛𝑛 , the 
proposed method can be used for both the accurate and 
rapid generation of the I-V curve. In the future, this 
proposed method will also be used for the enumeration of 
the I-V curve under partial shading conditions.  
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3. Proposed Method

2. Motivation

4. Simulation Results

5. Conclusions

 A simple and easy to use approximate PVM equation based on the mathematical principle of the superellipse is proposed.

 Performance indices show that the proposed method gives an accurate enumeration of the key points of the I-V curve across its full range with minimal error.

 The average CPU execution time of the proposed method is roughly 32 times faster than the conventional methods.

1. Introduction

2022 Power Electronics Conference

 A solar array simulator (SAS) as shown in Fig. 1 is a DC power supply that gives

the exact output characteristics as a photovoltaic (PV) panel in real time.

 Due to the exponential function in (1), the full range enumeration of the I-V

curve as shown in Fig. 2 is quite complex.

 The reference generator is usually embedded with approximate PV model

(PVM) equations for the full implementation of SAS.

 This paper proposes a new PVM equation for the fast and accurate

approximation of the I-V curve using the reference generator.

Method Vmp 

(V)

Imp 

(A)

Voc (V) Isc (A) Error 

Vmp (%)

Error 

Imp (%)

Error 

Voc (%)

Error Isc

(%)

Fill Factor 

(%)

Execution 

Time (ns)**

Relative 

Execution 

Time

Manufacturer 26.3000 7.6100 32.9000 8.2100 0.7410

Proposed (n3.6) 25.8485 7.4644 32.9000 8.2100 -1.7167 -1.9130 0 0 0.7143 4 1

Newton-Raphson 24.8644 7.0978 29.4400 8.2096 -5.4586 -5.3970 -10.5167 -0.0055 0.7407 117 29

Fixed-point 

iteration

24.5680 7.0978 29.0800 8.2096 -6.5856 -6.7300 -11.6109 -0.0045 0.7304 127 32

Approximate 

Lambert-W

24.5350 7.1916 29.5070 8.2093 -6.7110 -5.4980 -10.3131 -0.0083 0.7284 138 35

Lambert-W 24.5680 7.1993 29.440 8.2096 -6.5856 -6.7305 -10.5167 -0.0055 0.7215 9830 2458

Table 1. Enumeration performance for 5 different I-V curve approximation methods using KC200GT PV panel.

**Enumeration was evaluated in an 11th Gen Intel(R) Core(TM) i9-11900K @ 3.50GHz, 3504 Mhz, 8 Core(s), 16 Logical Processor(s) CPU

Fig. 1. A block diagram of the internal 

structure of a typical SAS.

Fig. 2. A typical I-V curve with its four key points under 

standard test conditions as defined in any manufacturer’s  

datasheet.

 The choice of PVM equation affects both the static and dynamic performance

of a SAS.

 The long iteration or non-convergence often associated with the conventional

PVM equations compromises the performance and execution time of the SAS.

 To address this challenge, a PVM equation which is based on the mathematical

principle of an nth-shaped superellipse is proposed.

Fig. 3. A plot of an nth-shaped superellipse. Fig. 4. A plot of an nth-shaped superellipse describin

g the four key points of the I-V curve.

Fig. 5. A simple fixed-point iteration used for obtaining the optimum value for an nth-shaped superellipse.

𝑖𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝑠 𝑒
𝑣𝑝𝑣+𝑖𝑝𝑣𝑅𝑠

𝐴𝑁𝑉𝑡 − 1 −
𝑣𝑝𝑣 + 𝑖𝑝𝑣𝑅𝑠

𝑅𝑠ℎ

(𝟏)

 An nth-shaped superellipse is an ellipse that retains its geometric points at both

its semi-major and semi-minor axes respectively as shown in Fig. 3.

 Due to the unique similarities in Figs. 2 and 3, the exponent in (1) can be

parameterized such that

𝑉𝑚𝑝

𝑉𝑜𝑐

𝑛
+

𝐼𝑚𝑝

𝐼𝑠𝑐

𝑛
= 1. (𝟐)

 The ratios
𝑽𝒎𝒑

𝑽𝒐𝒄
and

𝑰𝒎𝒑

𝑰𝒔𝒄
in (2) are the voltage and current ratios of a typical I-V

curve in Fig. 2 which can be obtained directly from any manufacturer’s

datasheet.

 Taking 𝑨 =
𝑽𝒎𝒑

𝑽𝒐𝒄
and 𝑩 =

𝑰𝒎𝒑

𝑰𝒔𝒄
, the simplified equation describing Fig. 4 can

therefore be defined as

(a) (b)
Fig. 6. Comparison using 5 different techniques (a) I-V curve approximation (b) execution time.

 The four conventional methods failed to obtain the maximum

power point as specified in the manufacturer’s datasheet with a

percentage error of about −𝟕%.

With an optimum value of 𝒏 ≈ 𝟑. 𝟔, the proposed method generates

an I-V curve with a percentage error that is roughly one-third of the

conventional method.

 Simulation results in Fig. 6 therefore validates that the newly

proposed PVM equations in (3) eliminates the need for solving

complex equation often associated with the conventional methods.

𝐴𝑛 + 𝐵𝑛 = 1. (𝟑)

 To obtain the optimum value for 𝒏 , a simple iteration is performed after

introducing an error margin (ERM) into (3) as described in Fig. 5.

Electrical and Physical Specifications of the KC200GT 

PV panel under Standard Test Conductions (** STC)

Maximum Power 

(𝑃𝑚𝑎𝑥)

200 𝑊

(+10%

/−5%)

Number of cell

s per module

54

Maximum Power 

Voltage (𝑽𝒎𝒑𝒑

𝟐𝟔. 𝟑 𝑽 Weight 18.5𝑘𝑔

Maximum 

Power Current 

(𝑰𝒎𝒑𝒑)

𝟕. 𝟔𝟏 𝑨 Length Width 

Depth

1425𝑚𝑚

× 990𝑚𝑚 × 36𝑚𝑚

Open Circuit 

Voltage (𝑽𝒐𝒄)

𝟑𝟐. 𝟗 𝑽 IP Code 𝐼𝑃65

Short Circuit 

Current 𝑰𝒔𝒄

𝟖. 𝟐𝟏 𝑨 Reduction in 

Efficiency 

under Low 

Irradiance

7.8%

Temperature 

Coefficient of 𝑉𝑜𝑐

− 1.23

× 10−1 𝑉/℃

Manufacturer KYOCERA 

Corporation

Temperature 

Coefficient of 𝐼𝑠𝑐

3.18 ×

10−3 𝐴/℃

**STC
𝟏𝟎𝟎𝟎

𝑾

𝒎𝟐

𝑨𝑴𝟏. 𝟓, 𝟐𝟓℃
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